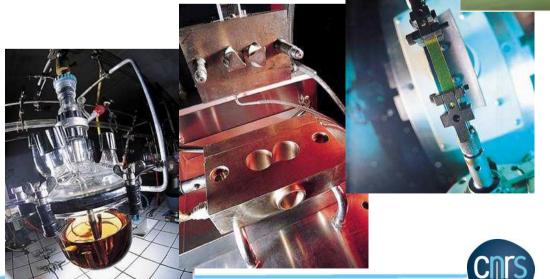

UMR 5223 Polymer Materials Engineering Lab.

Scientific Area: Polymers From Chemistry to « Object »


SCIENTIFIC AREA OF EXPERTISE

Polymers, from Chemistry to « Object » (through its properties and functions)

In 4 core scientific areas of expertise:

Chemistry and Macromolecular Chemistry Polymer Rheology and Processes Polymer Physics and Functional Properties Polymer at the Interface with Life Sciences

STATUS AND LOCATION

CNRS Joined Research Team UMR5223

Member of the Community of University Lyon-St Etienne

Head: Prof. C. CARROT

INSA Lyon, *Villeurbanne and Oyonnax*

Prof. Etienne FLEURY

etienne.fleury@insa-lyon.fr

Lyon 1

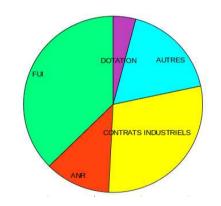
Université Claude Bernard Lyon 1, *Villeurbanne*

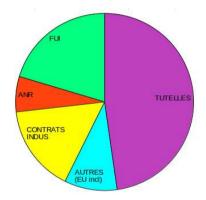
Prof. Thierry DELAIR
Thierry.delair@univ-lyon1.fr

Université Jean Monnet

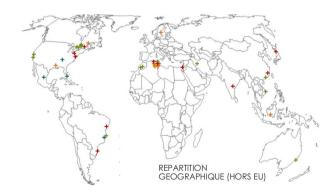
Saint-Etienne Prof. Jean-Charles MAJESTE majeste@univ-st-etienne.fr

htpp://www.imp.cnrs.fr


IN A FEW FIGURES

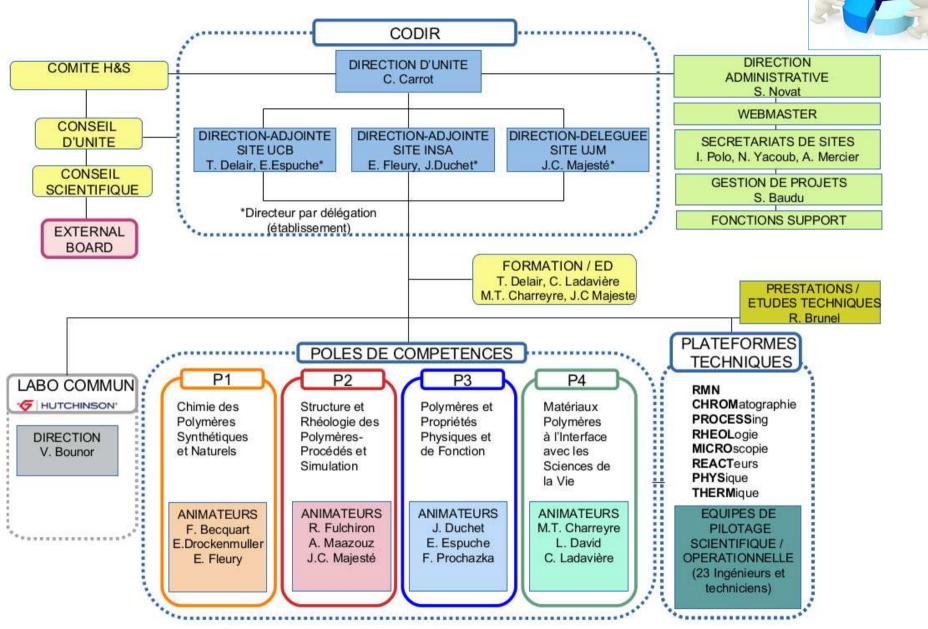


226 Members: Senior scientists: 56, Technical Staff: 31, PhD or postdoc: 125.

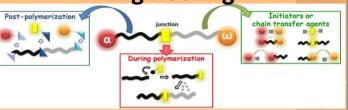

86 scientific papers, 97 oral presentations (22 invited) in 2017

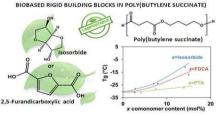
5.6M€ fundings and contracts (2017)11.3 M€ budget including salaries

94 international partnerships (2016)



ORGANIZATION


SCIENTIFIC POLICY AND OBJECTIVES


1-Polymer chemistry

Topic #1- Macromolecular **Engineering**

Dye-labelled polymer chains at specific sites: Synthesis by living/controlled polymerization M.T. Charrevre et al. Prog. Polym. Sci. 36, 568 (2011)

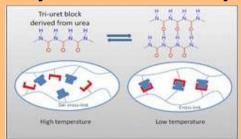
Topic #3- Chemistry & Sustainable development

Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review

Progress in Polymer Science 35, 578-622 (2010)

JNIVERSITÉ

Chemistry of Polymerization


Chemical Modification of natural (polysaccharides) and oil-based polymers

Condensed Phase Reactions and Reactive extrusion

Chemical and Microstructure Analysis:

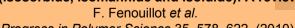
NMR, Chromatography, DSC, Spectroscopy (IR, UV, Raman)

Topic #2-Supramolecular or Dynamic Chemistry

Polyurea-Urethane Supramolecular Thermo-Reversible Networks Y. Ni et al. Macromolecules, 46, 1066-

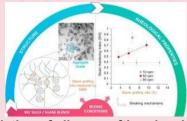
1074 (2013)

Topic #4- Surface et interface Chemistries


Nanostructured organic-inorganic hybrid films prepared by the sol-gel method from selfassemblies

of PS-b-paptes-b-PS triblock copolymers.

C. Gamys et al. J. Polym. Sci.Part A: Polym. Chem. 49, 4193-4203 (2011).



2-Polymer Structure and rheology - Process and Modelling

Topic #1- Linear viscoelasticity:

(VEL) characterization in

viscosimetric flows

Correlation of silane grafting density with rheological properties of silica filled rubber:
Coupling of flow and temperature
M. Yrieix et al. European Polymer Journal, 94, 299-310 (2017).

Reactive Processes (dispersed media, High T°, sol-gel, SC CO₃)

Structuration of polymers in or from the melt

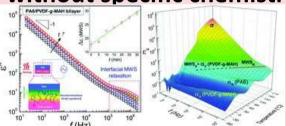
Modelling of processes and mixing devices

Linear and non-linear viscoelasticity of polymer melts, gels, blends, composites.

Topic #2-Non linear VEL:
organization under stress in
viscosimetric flows

Composition Effects of Thermoplastic Segmented Polyurethanes on their nano-structuring kinetics with or without preshear

E. Mourier et al. Journal of Polymer Science, Part B: Polymer Physics, 49, 801-811 (2011)

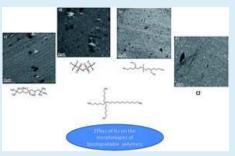

Topic #4- Modelling of processing tools

Residence time distributions in a co-kneader: A chemical engineering approach.

B. Monchatre et al. Polymer Engineering and Science, 55(6), 1237-1245 (2015).

Topic #3-Non viscosimetric flows (during processing) with or without specific chemistry

Coextrusion of multilayer structures, interfacial phenomena.


K. Lamnawar et al. Encyclopedia of Polymer Science and Technology. (2013)

3-Physics and Functional Properties of Polymer-based Materials

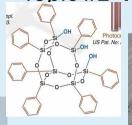
Topic #1- Ionic Materials

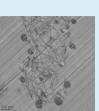
Ionic liquids-lignin combination: an innovative way to improve mechanical behaviour and water vapour permeability of eco-designed biodegradable polymer blends.

S. Livi et al. RSC Advances, 5, 1989-1998 (2015).

Relationships between architectures-physical properties

Design of homogeneous or multiphased materials

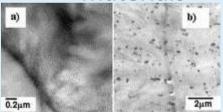

(Multi) Functional
Polymers with a multiscale structuration


Reinforcement in bulk and at surface

Segmentary Mobilities and electronic and ionic transport

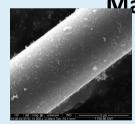
Fiber based, foams, nanocomposites, energy, coating

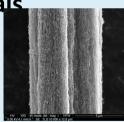
Topic #2-Thermoset Materials



Influence of POSS structure on the fire retardant properties of epoxy hybrid networks.

E. Franchini et al. *Polymer Degradation and Stability*, 94, 1728-1736 (2009).


Topic #3-Nanocomposite Materials

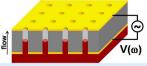


In situ synthesis of organic–inorganic hybrids or nanocomposites from sol–gel chemistry in molten polymers.

V. Bounor-Legaré. *Progress in Polymer Science*, 39, 1473-1497 (2014)

Topic #4- Composite Based Materials

Synergetic catalytic effect of carbon nanotubes and polyethersulfone on polymerization of glassy epoxy-based systems-isothermal kinetic modelling. H. Beneš, et al. Thermochimica Acta, 590, 107-115. (2014)



3-Physics and Functional Properties of Polymer-based Materials

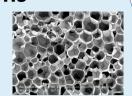
Topic #5- Materials for Energy

Density fluctuations and phase transitions of ferroelectric polymer nanowires.

A. Serghei et al. *Small*, 6, 1822-1826 (2010).

Relationships between architectures-physical properties

Design of homogeneous or multiphased materials


(Multi) Functional Polymers with a multi-scale structuration

Reinforcement in bulk and at surface

Segmentary Mobilities and electronic and ionic transport

Fiber based, foams, nanocomposites, energy, coating Topic #6-Foams

Batch foaming of chain extended PLA with supercritical CO₂: influence of the rheological properties and the process parameters on the cellular structure.

Y. Corre et al. *The Journal of Supercritical Fluids*. 58, 177-

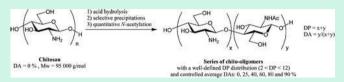
Y. Corre et al. *The Journal of Supercritical Fluids*, 58, 177-188 (2011).

Topic #7-Coatings

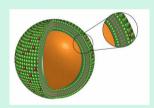
Homogeneously and gradually anchored selfassembled monolayer by tunable vapor phaseassisted silanization

G. Souharce et al. *RSC Advances*, 3, 10497-10507 (2013).

Topic #8- Recycling of Materials


Patents FR 2984894 et W 2013093364

4-Polymer and Life Sciences


Topic #1- Decoys materials: oligosaccharide and polyelectrolytes engineering

Chemical Preparation and Structural Characterization of a Homogeneous Series of Chitin/Chitosan Oligomers

S. Trombotto, Biomacromolecules, 9, 1731-1738 (2008)

Topic #3-Core-shell for vectorisation

An overview of lipid membrane supported by colloidal particles.

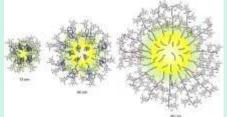
A.L. Troutier, Advances in Colloid and Interface Science, 133, 1 (2007)

Oligosaccharides and lipoconjugates with controlled structure

Complex colloids for targeted therapies and drug delivery

Multiscaled structured physical hydrogels based on glycosaminoglycans for tissue engineering

Multifunctional biocompatible polymers for nano-imaging cellular processes


Topic #2-Materials for tissueengineering

Montembault et al., Biomaterials, vol. 26, 2005, 933-43

Topic #4-Polymer probes for fluorescence imaging

Nanocarriers with ultrahigh chromophore loading for fluorescence bio-imaging and photodynamic therapy.

J.R. Navarro, Biomaterials, 34, 8344-8351 (2013).

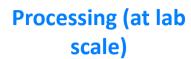
SPECIFIC TOOLS

Polycondensation Pilot Reactors

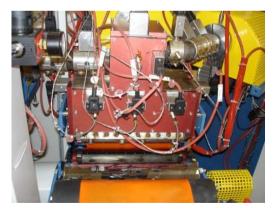
Coupling of Rheologie with

Scaterring/optcal/diélectric/mi

cro-waves



Chromatography and NMR Spectroscopy



CROSSING OF KNOW HOWS AND SOCIETY ISSUES

	Know-hows				
			Rheology	Physics	Life Sciences
	Energy	lonic Liquids	Nano filled	Dielectric	Electrical
	Transportation	Elastomers	Foaming	Composite	Mechanical
	Health	Silicon	Supercritical Fluids	Molecular Imprinted polymer	Bio Compatibility Tissue Engineering Vectorization
	Packaging B	Biobased	Multi layer	Transport	Bio degradation
		ROP	Recycling	Solvent free	Biodegradable

INDUSTRIAL PARTNERSHIPS TOTAL COMMITTED TO BETTER ENERGY arianegroup Elkem **HUTCHINSON®** cea **√**exans SOPREMA **TORAY** SOLVAY Innovation by Chemistry **Gerflor** Toray Films Europe Blue Solutions ROQUETTE Offering the best of nature **SNF** SETUP SuperGrid OWENS CORNING NOVARES Institute Mateis Ingénierie des Matériaux Polymères BabolaT GROUPE SOFILA SAFRAN CHOMARAT Structil ZODIAC AEROSPACE NOVATION P LASTURGIE **C** OMPOSITES Schlumberger Dow **EIFFAGE** Lact CTP One startup: 28 employees GATTEFOSSÉ INSTITUT CARNOT

MICHELIN

SAINT-GOBAIN

Lyon

Polymer

Science, Engineering

Close and

friendly

collaboration

ARKEMA

Activation

processium

CAP2

CHIMIE, CATALYSE, POLYMERES & PROCEDE

2 M€

contracts